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In  Part 1 of this series conservation principles for ring circulation and kinematic swirl 
angular momentum were developed for general axisymmetric incompressible viscous 
flow. These principles were then used to classify the four independent axial causes 
of swirl-free conically similar viscous flow. Part 2 provided a detailed analysis of the 
one-parameter swirl-free flows that are generated by each one of the axial singularities 
acting alone. The present paper extends, to swirling flow, the description of the axial 
singularities that drive axisymmetric viscous flow. In the special case of conically 
similar viscous flow, two independent half-line sources of swirl angular momentum 
suffice to complete the set of axial singularities that can generate such swirling flows. 
The individual strengths of the six independent axial causes provide a complete 
characterization of all conically similar viscous flows that can be generated in this 
way. This Part 3 completes the task of analysing in detail the independent 
one-parameter flows generated by axial causes by studying the flow caused by 
uniform production of kinematic swirl angular momentum on a half-axis. This flow 
demonstrates how swirl may induce an axial half-plane flow. For large swirl 
circulation strengths, swirl angular momentum diffuses and convects so as to fill 
slightly more than half the space with an almost constant density of swirl angular 
momentum. A well-developed internal boundary layer, in the form of an outward 
radial jet, then separates this region from one in which the flow is almost irrotational. 
The jet entrains two impinging convection fields. The angular location of the jet is 
determined by relating the axial component of moment of whirl produced at the origin 
to the strength of the swirling circulation singularity on the axis. 

1. Introduction 
Conservation of ring circulation and of volume were used in Part 1 (Pillow & Paul1 

1985, hereinafter referred to as I) of this series of papers to show that there are just 
three different independent types of axial singularities that generate swirl-free 
conically similar viscous flows when no physical boundaries are present. One such flow 
type arises when volume sources are uniformly distributed along a half-axis. The 
remaining two types arise from production of ring circulation either at the origin, 
or along the whole axis with an appropriate line density which is antisymmetric about 
the origin. These latter two types of flow have the strength of their singularities 
measured by the independently conserved radial and transverse rates of discharge 
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of the axial component of moment of whirl. Details of this classification were given 
in $4 of I. Part 2 (Paull & Pillow 1985, hereinafter referred to as 11) presented the 
flows attributable to these distinct causes and elucidated the roles of the individual 
diffusion and convection terms in the flux vector J/2x for ring circulation. 

In swirling conically similar viscous flow, as pointed out in $2 of I, not only does 
Jrequire modification in order to account for swirl, but a new conservation principle 
for kinematic swirl angular momentum comes into play. Dimensional analysis shows 
that a further independent axial singularity that can generate such flows is provided 
by uniform production of kinematic swirl angular momentum on a half-axis. 
Independent strengths for these singularities on each half-axis then provide sufficient 
extra conditions for the sixth-order system of coupled ordinary differential equations 
I (3.4), I(3.5) and I(3.6) to become well-posed, when the other four swirl-free 
singularities are specified. (Here I (3.4), for example, refers to equation (3.4) of 
Part 1. )  

This present paper is concerned with classifying swirling conically similar viscous 
flows in terms of their axial causes and with the final independent problem in the 
set of six one-parameter solutions generated by the independent axial singularities. 
The latter is the swirling flow in which kinematic swirl angular momentum (i.e. swirl 
angular momentum per unit mass) is produced uniformly along only one half-axis 
in an infinite space. Several authors (Gol’dshtik 1960; Hoffmann 1974; Kidd & Farris 
1968; Schwiderski 1969; Serrin 1972; Whang 1968; Wygnanski 1970; Yih et al. 1982) 
have investigated swirling causes with conical boundaries. Coupling effects make it 
difficult to characterize the parameters in such flows directly in terms of the rate of 
production of conserved quantities, particularly when no-slip boundary conditions 
are involved. Here in this paper there is no boundary and no production of volume 
on the axis. It is the strength of the swirling singularity alone that drives the motion. 
(Coupling of axial causes and conically similar production of conserved quantities on 
cones will be examined in later papers in terms of conservation principles.) For 
small-strength kinematic swirl angular-momentum production the induced axial 
half-plane flow is away from the half-space in which the uniform axial distribution 
of kinematic swirl angular-momentum sources lies. As the strength of production 
increases, a reversed-flow region neighbouring the free half-axis appears and develops 
so that, when the strength of production is large, the separatrix is directed almost 
normal to the axis of symmetry. TQ first order, kinematic swirl angular momentum 
is then confined to the side of this separatrix containing the kinematic swirl 
angular-momentum sources. An internal boundary layer in the form of a transition 
between swirl-free irrotational flow and constant-swirl-circulation flow is then present 
a t  this separatrix and there is a strong radially outwards flow in the neighbourhood 
of the internal interface. 

The above problem is formulated mathematically in $4, and the solutions for small 
and large values of the strength of production of kinematic swirl angular momentum 
are given in 9$5 and 6 respectively. The new features of diffusion, convection and 
viscous convection of kinematic swirl angular momentum and the flow of ring 
circulation along the vortex tubes, which were described in $2 of I, are illustrated 
and discussed in $ 7 .  This affords a more detailed understanding of how swirl may 
induce an axial half-plane flow. Computer-generated solutions and visualizations of 
the flow field supplement the discussion. 

In swirling flow the conservation principle for the axial component of moment of 
whirl, which was formulated in I(4.7) and modified in I (4.12), requires further 
modification if the sources of kinematic swirl angular momentum and of the axial 
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component of moment of whirl are to remain uncoupled. The decoupling of these flow 
singularities provides the specification of axial causes in swirling conically similar 
viscous flows described in $3 of this paper. 

2. Conservation principles in swirling axisymmetric flow 

can be broken into axial half-plane and azimuthal components in the form 
It was shown in $ 1 of I that the velocity field q(r, t )  and the vorticity field w(r,  t )  

T 
q = u+-3 (2 .1 )  

and w = curl q = 8 + u@, (2.2) 

U 

in terms of cylindrical polar coordinates (z, U ,  $). Since both u and 8 are solenoidal, 
they can be described in terms of a stream function @ and the swirl circulation 2nT: 

and 
1 

8 = - [T,2-Tz6] .  (2-4) 
U 

1 In terms of @, 1 is given by 
@zz--@,+@,c = -U% 

U 

Conservation of ring circulation (I (2.3)) requires that 

31 
-+div at J = -4nvlS(a), (2.6) 

where, by I (2.9), the ring circulation flux vector J/2n is given by 

T 8  
J =  l ~ - -  --2lqO-vVl. 

U U  

Here qo = vb/u, div go = 2nv8(a), and Z/2n is the ring-circulation volume density. In  
swirling flow, axial half-plane ring circulation is produced by rotation of vortex tubes 
as a result of a gradient in the swirl circulation. It was shown in $ 2  of I that the 
integrated effect of this production could be incorporated into the flux vector J as 
a new term -Tf2/cr2, which described the flow of ring circulation along the vortex 
lines of the axial half-plane vorticity 8. 

Conservation of kinematic swirl angular momentum (I (2.12)) requires that 

aT 
-+div K = 0, (2.8) at 

where, by I (2.13), the kinematic swirl angular-momentum flux vector Kis  given by 

K =  Tu+2Tq0-vVT (2.9) 

and T is the kinematic swirl angular-momentum volume density. The convection term 
Tu and the diffusion term - v VT in K are completely analogous to the corresponding 
terms in the ring-circulation flux vector J/2n. However, the viscous convection term 
2Tq0 in Know acts in the opposite direction to the corresponding term in J. 

The conservation principle I (4.7) for the axial component of moment of whirl was 
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derived for swirl-free flow in $4 of I in order to  measure singular production of ring 
circulation on the axis of symmetry in conically similar viscous flows. The 
corresponding formal generalization of I(4.7) for swirling flow can also be derived 
directly from (2.6) and (2.7) after multiplication by u2 and reformulation as a 
conservation equation. It is 

am 
- + div [m( u + 2q0) - u Vm - TO + { 2qq - (q - q )  I}*f] = 0, 
at 

(2.10) 

where m is the volume density of the axial component of moment of whirl. Here 

(2.11) 
m = a21 and 

It was pointed out in $4 of I that if volume sources of variable strength are distributed 
along the axis and generate the irrotational velocity field u,f+w,8 then the flux 
vector in (2.10) requires modification if it  is to remain independent of the flow induced 
by the volume sources. Subtraction of the solenoidal flux vector 

T 
q = uf+wb+-J. 

CT 

(24; -WE) f + 2up op 8, (2.12) 

given in I (4.10), ensures that the modified flux vector I (4.12) for the axial component 
of moment of whirl vanishes in potential flow, since the non-viscous contributions 
to i t  now only amount to  interactions between the ring circulation and potential flow 
fields or the ring circulation field and itself (I (4.14)). 

When swirl is present, there is, as well, distributed production of ring circulation 
occurring as a result of rotation and stretching of the vortex tubes. This distributed 
production is replaced by the additional flux terms - Pf/a2 and - TO which appear 
in (2.10). Even when swirl is present, the production of the axial component of 
moment of whirl can thus still be confined to the axis of symmetry and I x I = CQ. 

Conceptually, the strengths of these fluxes suffice to determine the axial half-plane 
flow. 

I n  (2.10) the flux term -Pf/a2 formally measures the integrated effect of the 
distributed production of the axial component of moment of whirl, while -TO 
represents the flux of the appropriate moment of ring circulation along the vortex 
tubes. The former requires modification since i t  predicts a line vortex, with constant 
swirl circulation 2nc, has a flux - c2f/u2 of the axial component of moment of whirl, 
despite an absence of ring circulation in the flow. This anomaly is a result of 
non-specification of the causes as I x I + 00 and may be corrected if i t  is noted that 
exactly the same term - c2 f /a2  would arise in the flux vector of (2.10) if the flow 
were irrotational and generated by a uniform distribution of volume sources, with 
a line density +2nc (the sign choice is irrelevant) along the axis of symmetry. 
Subtraction of the solenoidal flux vector -c2 f /u2  from the flux vector in (2.10) 
removes this anomaly for the case of constant swirl circulation. 

This modification can be extended to  the general case of axisymmetric flow where 
the swirl circulation 2nT is not constant. If 2nT,(z) is the value of the swirl circu- 
lation on the axis of symmetry and +uT is the irrotational velocity field generated 
by the equivalent source distribution with line density f 2nT0, then subtraction 

(u; - w$) f + 2u, WT 3 (2.13) of the solenoidal flux vector 

provides a conservation principle which removes the effects of constant swirl 
circulation at 1x1 = CQ and along the axis of symmetry. This flux vector allows 
measurement of the axial component of moment of whirl production in swirling flows 



Conically similar viscous jlows. Part 3 363 

in terms of production along the axis of symmetry and, if necessary, at I x 1 = 00. This 
would not have been possible with (2.10), since the term -T22/u2 there calls for an 
infinite flux tangential to the axial swirling cause. It should be noted that, unlike 
up, uT in no way contributes to the axial half-plane velocity u. 

In general axisymmetric viscous flow the conservation equation for the axial 
component of moment of whirl with volume density m now becomes 

am 
-+divN= at 0, (2.14) 

where N =  NA+Ns, (2.15) 

NA = m(u+ 2q,) - v V m  + (u2 -v2) 2+ 2uv8- [(ui - vi) 2+ 2up vp 81 (2.16) 

and 

The axial half-plane flux vector N for the axial component of moment of whirl in 
swirling flow is thus composed of a contribution NA resulting from the axial half-plane 
flow and a contribution Ns that results from the swirling motion. 

3. Quantitative characterization of axial causes in conically similar viscous 
flows with swirl 

As described in $2, the conservation principle for the axial component of moment 
of whirl is needed in conically similar viscous flows to measure, and hence classify, 
the two independent ring circulation causes. The main requirement of the conservation 
principle is that, since it concerns conservation ofa moment of ring-circulation density 
(u21), its flux vector should be directly independent of the volume and kinematic swirl 
angular-momentum singularities. 

When swirl is present, the flux vector for the axial component of moment of whirl 
is N as given in (2.15). This includes the particular case of swirl-free flow described 
in $4 of I, and decouples the axial swirl circulation cause strengths from the flux of 
the axial component of moment of whirl. There remains, however, the natural flux 
-TO of the axial component of moment of whirl, which is merely the u2 moment 
of the flux of ring circulation along the vortex tubes needed to account for rotation 
and stretching of the vortex tubes. In  conically similar flow this term describes a 
concentrated source of the axial component of moment of whirl at the origin of 
strength 

- 

xvy72( + 1) - 7 2 (  - l)]. 

The term - Tsd is solenoidal. In this paper, for the purpose of characterizing the 
ring circulation singularities, we standardize on measuring the excess rate of 
discharge of the axial component of moment of whirl over this natural production 
induced by swirl. This external production of the axial component of moment of whirl 
is described by the discharge of the flux vector N+ TO from the axis. This discharge 
is described by a flux function X, which may be written as 

where 

and 
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X, and Xs  are the flux functions for the axial half-plane and swirl contributions to 
the flux vector N +  TO. Thus 

N+TO = NA+Ns+TO, (3-5) 

where 

and (3.7) 

(3.10) 

and ks(Y) = 72+f$-YL3'- ( 1  -P2 )  w2. (3.1 1 )  

Herefp(f l )  = f ( f 1 ) , f T ( f l ) = 7 ( f l ) ,  andfpandfTarebothlinearinp. 
As in the swirl-free classification in $4 of I, the inverse-square radial dependence 

of these terms means that the radial and transverse rates of discharge are independently 
conserved. That is, there is no interchange of the axial component of moment of whirl 
between the radial and transverse fluxes, with the result that these discharges classify 
two independent ring circulation producing singularities. 

The strength of the ring circulation producing singularity at the origin, as specified 
by the radial discharge of N +  TO, is L, where 

= 2xu2[xA( - ) + xS( - ) -XA(' ) - xS(' )I 3 (3.12) 

while the strength of the axial component of moment of whirl production associated 
with an antisymmetric distribution of these point singularities is 

K = 2xv2k = 27'tV2(k~(fi) + kS(p)). (3.13) 

Here K / r  measures the rate of discharge per unit radial thickness from the right 
half-axis over spherical surfaces into the left half-axis from a line distribution of 
singularities on each half-axis whose line density is inversely proportional to the 
distance from the origin (as conical similarity demands). The constancy of the 
expression for k is a result of the independent conservation of the transverse rate of 
discharge of the axial component of moment of whirl, though k may also be viewed 
as an integral invariant of I (3.5) obtained with the integrating factor 1 -p2. 

Equations (3.12) and (3.13) generalize the classification of the ring-circulation 
singularities, developed in $ 4  of I, to swirling flow, and describe respectively the 
strengths of a point source and an antisymmetric conically similar distribution of 
axial component of moment of whirl sources. 

In the general characterization of swirling flows, the strengths of the uniform 
half-line volume sources are unaffected by the presence of swirl, and they have their 
strengths in conically similar viscous flows specified, as before, by 

M , ,  - = T 2xuf( * 1) .  (3.14) 
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The final two conically similar causes are, as dimensional analysis indicates, 
uniform half-line sources of kinematic swirl angular momentum. The linear radial 
dependence of the flux function A for kinematic swirl angular momentum (I (3.21)) 
ensures uniformity of the half-line sources. Their independence is ensured by the 
independence of the values assignable to the swirl circulation about each half-axis 
when viewed as boundary conditions for I (3.6). The strength of kinematic swirl 
angular momentum production is then 

(3.15) 

(3.16) 

where 21cv7( 1) is the swirl circulation about each half-axis. This completes the 
classification of swirling conically similar viscous flows in terms of axial causes. A list 
summarizing the formulae measuring individual axial cause strengths in swirling 
conically similar viscous flows appears in table 1 .  

A discussion of the axial half-plane jet induced by swirl concludes this section. If 

J + ,  - = T2zv2A( f 1 )  

= T 2zv21f( f 1)  T 21 T (  f 1 ), 

and 
(3.17) 

are substituted in (3.9) and (3.11), (3.13) can be rearranged to yield 

where now 

(3.19) 
and ks@) = T ~ + T ( - ~ ) T ( ~ ) .  

Here k,/r is the contribution per unit radial thickness to the transverse (0) rate of 
discharge of the axial component of moment of whirl arising from the axial half-plane 
flow, while ks/r describes those contributions arising from swirl. 

In $4 of I1 it has been seen that if k, is non-zero at a half-axis then there exists 
a strong axial jet about that half-axis. In  (3.18) exactly the same expression kA(p) 
appears (kA(p) is as given in (3.19)). It therefore follows from (3.18) and (3.19) that 
swirl produces, a t  the axis of symmetry, a local reduction of 

2”W2(72+T(1)T(-l)) (3.20) 

in the strength of the axial distribution of the axial component of moment of whirl 
sources apparent to the axial half-plane flow. If k - ks is non-zero at  a half-axis, the 
axial half-plane flow locally about that half-axis will experience an axial jet 
asymptotically equivalent to that of 54 in I1 with 

C = i (k-  k,( f 1)) .  (3.21) 

It should be noted that in swirling flow kA@) is not, in general, constant. In contrast 
with swirl-free flow, the transverse rate of discharge of the axial component of 
moment of whirl resulting from the axial half-plane flow alone (kA@)dr/r) is not 
conserved and varies with p. In swirling flow, transverse conservation of the axial 
component of moment of whirl has an input from the swirling motion which acts as 
a potential supplier of the axial component of moment of whirl to the axial half-plane 
flow. (In this sense ring and swirl circulation become interchangeable forms of the 
same general quantity : circulation.) 

I kA@) = ( -p2l2 9’ - ( -p2)fg-f2 + p(f2)’ + ( -p2)  (f’l2 +f( - If(’ 
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4. The mathematical problem of the flow produced by a uniform half-line 
source of kinematic swirl angular momentum 

This section develops the mathematical equations describing the flow produced by 
a uniform half-line source of kinematic swirl angular momentum. This source is 
assumed to occur only on p = 1. Thus 

7(1) = C ,  T(-1) = 0. (4.1) 

f ( -1)  =f(l) = 0. (4.2) 

No volume production occurs on either half-axis ; hence 

The governing differential equations in their most general form are 

(1  -p2)f’+2pf-+f2 = G ( , U , T ~ ) + A ~ ~ + B ~ + C  (4.3) 

and (1-p2)7”-f7’ = 0, (4.4) 

These are I (3.7), I (3.8) and I (3.10) with p1 = - 1 and puo = 1. 
In this system, the solution f always has 

lim (1 -p2)f’ = 0, 
p - f l  

and the function G k ,  72) has 

G ( f 1 , ~ ~ ) = 0 ,  G( ,U ,T~)<O.  (4.7) 

A + C =  B = 0 .  (4.8) 

The strength K of the antisymmetric distribution of axial component of moment. 

Thus zero volume production ((4.2)) implies, as in swirl-free flow, that 

of whirl sources, as given by (3.13), can be rewritten as 

K = 27CV2[T2 - ( 1 -pa) G“ - 2pc‘ + 2G + 2 ( c  - A )  +f,( 1 )fp( - 1 ) +f~( 1 )f~( - 1 )] (4.9) 

by successive differentiation of (4.3). Zero strength K thus indicates that 

C - A = O ,  (4.10) 

once it is realized that 

lim (1-p2)G”(u) = G ( - ~ , T ~ )  = c ‘ ( - l , ~ ~ )  = 0 (4.11) 
p+-1 

and (1  -p2) G“ + 2pG.’-2G = 72. (4.12) 

(The productsfp(l)fp( - 1) andfT( l)fT( - 1) are both zero because there are no volume 
sources and no swirl-circulation producing singularities on p = - 1 .) 

The governing differential equation for the non-dimensional stream function fb) 
then has the simplest form of coupling possible and is 

(1-p2)f+2pf--p = G(p,72) ,  (4.13) 

where G(p, 72) is given by (4.5). The non-dimensional swirl circulation 7 here satisfies 
(4.4) and (4.1). 
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The kinematic swirl angular momentum produced per unit length per unit time 
on the right half-axis is then J1 = 4nv2c. A point source of the axial component of 
moment of whirl is the remaining singularity that needs to be specified. The 
standardization, that  the discharge of N + T a  from the origin is zero, provides a 
condition for determining the constant of integration in (4.13) and corresponds to  
setting L = 0 in (3.12), whence 

(4.14) 

A solution of (4.13) and (4.4) that  satisfies (4.1) and the integral condition (4.14) is 
required. Since there is no apparent substitution that linearizes these equations, $$5 
and 6 concentrate on the form of the solution for small and large c respectively. 

5. Asymptotic form of the solution for small-strength kinematic swirl 
angular-momentum production 

When the kinematic swirl angular-momentum production is small, so is the 
non-dimensional swirl circulation c, and a series solution in powers of c can be used 
to reconstruct the solution. In this situation, the boundary conditions for 7 and the 
quadratic coupling term in (4.13) suggest 

f@) = cy0+cy1+ ... (5.1) 

7(p) = c70 + c371 + . . . . (5.2) 

(1-P2)f/++Pfo = G(Pc,73, (5.3) 

and 

Substitution in (4.13) then yields that the first-order terms of the series satisfy 

with (5.4) 

where 7; = 0, To( - 1)  = 0, T O ( l )  = 1.  (5.5) 

Once f o  and T~ are determined, the second-order terms are specified by 

with 

where (1+)7; = f O 7 k ,  T 1 ( - l )  = 0, T1(l) = 0. (5.8) 

(5.9) 

Integration of (5.3) and (5.5) gives 

and 

where &( - 1 )  is uniquely determined by 

(5.10) 

(5.11) 

No separatrix occurs in this almost-Stokes flow. Fluid is forced to flow away from 
the uniform half-line kinematic swirl angular-momentum production as a result of 
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FIGURE 1.  The first- and second-order functions in the almost-Stokes flow 
series expansion of the non-dimensional stream function. 
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FIGURE 2. The ring circulation distributions for the functions f,, and fi depicted in figure 1. 

FIGURE 3. The first- and second-order functions in the series expansion for the swirl circulation. 

the axial jet surrounding this cause ((3.21) and $4 of 11). These results are best proved 
by evaluating the integrals above, whereby 

fob) = a 0  -P )  In [($(I -P)1+&(1 -P2)  (5.12) 

and (5.13) 

The functionsf,, go and T~ are depicted in figures 1 , 2  and 3 respectively. The minimum 
for fo occurs for ,u > 0, since, by (5.3), pfo < 0 when& = 0. 
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The second-order solutions are now considered. Integration of (5.8) indicates that  

The second-order swirl circulation field 71 then has 

7 1 ( ~ )  3 0 (5.15) 

and possesses only a single extremum (a maximum), which occurs for p positive and 
less than the zero off,'@). 

Equation (5.6) can now be integrated to  give 

which implies that 

(5.16) 

(5.17) 

To reveal the nature of the solution fib) i t  is necessary to determine the sign of the 
first derivative a t  ,LL = - 1 that is consistent with zero production of the axial 
component of moment of whirl. 

The integral condition (5.7) yields a second relation betweenf;( - 1) andfi(1): 

Use of the identity 

and the expressions for f o  and 71 then indicate that 

and 

(5.18) 

(5.19) 

(5.20) 

Here [ ( z )  is Riemann's zeta function. This implies that 

f ; (  - 1) x - 1.4047 x f;(l) x - 1.0297 x (5.21) 

The functions fi(p) and f;'(,u) must therefore change sign at least once. Similar 
analysis reveals that  the functions fl, f :  and f,'" all have only a single zero. 

The functions fl, g1 and 71 thus appear as simply depicted in figures 1, 2 and 3 
respectively. It should be noted that the two-term expansion 

f = c2fo + c4f1 (5.22) 

can be expected to give an accurate representation of the solution only when i t  has 
no internal zeros, for, if these occur, then there exists p* such that f(p*) = 0 with 
f ' (p*) > 0, which contradicts C ( Y , , ~ ~ )  < 0 in (4.13). Highcr-order terms are then 
necessary to correct the two-term expansion. 

The form of the two-term expansion as c increases, however, suggests the presence 
of a developing internal zero off@) (a radial jet). This is not really unexpected, since 
the condition L = 0, when large velocities are present, amounts to requiring that 
them be no dominant leferight preference in the flow. As far as the axial half-plane 
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flow is concerned, for large c, the L = 0 condition can be maintained only by an inflow 
about the swirl-free half-axis to counter the jet ((3.21)) existing about the swirling 
cause. The matched asymptotic expansions in $6 reveal this feature. 

6. Asymptotic form of the solution for large-strength kinematic swirl 
angular-momentum production 

This section develops a matched asymptotic expansion to describe the solution 
when the swirl circulation Rtrength 2xvc is large. This reveals a well-developed 
internal boundary layer in the form of a transition between a region of swirl-free 
potential flow and one of constant swirl circulation (7 = c). The potential flow 
discharges into a jet lying within the boundary layer. This jet is directed outwards 
in such a way as to maintain the zero-production condition on L ((4.4)). 

When c is large the discussion that concludes $5 indicates that an internal zero of 
f(p) may develop. Suppose then that f(p) has an internal zero at p = p*, where 
lim Ifi I < 1. A t  p = ,u* (4.13) implies that 
C+ m 

while (4.4) gives 

which implies that 7‘ has a maximum value at p = p* and that T‘ decays on either 
side. If c is large the function G(p, T ~ )  is then large in magnitude, and the outer solution 

This statement is meaningful, since G ( ~ , T ~ )  < 0. It now follows, from (6.2), that 7’ 

decays rapidly and becomes exponentially small outside a small neighbourhood of 
p*. The outer solution for 701) is thus 

Replacement of 7 by T~ in (6.3) produces only a second-order change in the outer 
solution for f@). The outer solution for f(p) can therefore be taken as 

The choice of signs in the two regions of definition forto has been made so as to be 
compatible with f’(p*) < 0. Only one internal zero of f(p) is possible, since, at any 
internal zero o f f ,  f‘ < 0. Substitution of T~ from (6.4) into the expression for 
G@, 7:) in (4.5) then gives 

On the basis of (6.4) and (6.6), transition expansions are thus necessary for f and 
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i- about p = p*. An asymptotic expansion is also needed for f(p) near the end of the 
interval, p = 1, since the outer solution here fails to satisfy 

f@) - $ G ( l , ~ ~ ) ( l - p ) l n ( i - p )  a s p - t l .  

I n  what follows this expansion will be referred to as the terminating expansion. 
By the methods of matched asymptotic expansions, the transition expansion for 

(6.7) 
E f(r) is 

ftr(E) = -&(l -p$)i tanh 
4( 1 -,a$): ' 

and the transition expansion for T is 

where p = p* +c-lt. (6.9) 

The terminating expansion for f(p) may be expressed in terms of modified Bessel 
functions, and is 

(6.10) I KO(++) 
fte(7) = -TK (44) 

where p = 1 -TIC2. The p-widths of the terminating and transition regions are of 
different orders; however, since the terminating region surrounds the axis of 
symmetry, their angular widths are both O(c-l). 

The only undetermined constant in the matched solutions for f and T is now pL*. 
This is specified by the integral condition (4.14), which may be rewritten in terms 
of the matched expansions for f and 7. Three intermediate variables and inclusion 
of only the higher-order terms in the individual integrands allow (4.14) to  be written 
in the form 

1 2  

The f i s t  two terms here are of order c2 and the transition integral is of order p*c3. 
The remaining two integrals are collectively of order c2 lnc since the second last 
integral - -!@ In [ c - ~ ~ J  while the last integral -$? In [ C - ~ S + + ~ ~ ] .  The zero off(p), 
p*, is thus determined by 

Q) ' )' dE = c2 lnc, 
4( 1 -p%)i 

2cp, (i sech2 
-a 

that is 
6 lnc 

p* - --. 
C 

(6.12) 

Since p* does not encroach on p = f 1 as c+ CO, the expansions above are valid. 
(Implicit in writing transition and terminating expansions for separate regions is the 
requirement that these regions do not coalesce.) For large c the function f, g and T 
thus appear as in figure 4. 
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FIGURE 4. The non-dimensional stream function f, swirl circulation 7 and ring circulation density 
g for large-strength kinematic swirl angular momentum production on a half-axis 
(J1 = 4xvac, c = loo). 

7. Discussion of the flow 
Whilst the mathematical description is now complete, it is important to understand 

the strengths of the individual terms in the flux vectors, since this provides an 
understanding of the basic local balances for each of the conserved quantities and 
an alternative check on the validity of the solutions. 

For the sake of physical completeness, this section describes in detail the dominant 
flow features for small and large swirl circulations 2nvc about the uniform half-line 
source of kinematic swirl angular momentum. The swirling cause is assumed to occupy 
the right half-axis, with the left half-axis being free of external causes. 

The most significant feature for all values of c is that an axial half-plane jet is 
induced to flow inwards about the swirling cause. This follows from the discussion 
concluding 93, where swirl was seen locally to reduce the axial component of moment- 
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of-whirl production apparent to the axial half-plane flow. For the problem a t  

k =  7 ( - I )  = f ( f l )  = 0, and 7(1) = c .  hand 

Expression (3 .20)  then shows that the eflect of swirl on the axial halj-plane flow is to 
produce an apparent distribution of the axial component of moment-of-whirl sources 

R. Paul1 and A .  F .  Pillow 

with strength 

on the right half-axis of symmetry only. It is this distribution of sources, apparent 
to  the axial half-plane flow, which drives the inward jet induced by swirl about the 
swirling cause. The axial half-plane flow here is therefore asymptotically equivalent 
to that in $4 of I1 with C = -g2; as p+ 1 

( l - - p 2 ) f ’ + f -  -++(l - p )  

with 
vc2 

f - - p )  In (1  -p ) ,  m+-, 2r 

as (4.13) indicates. Near the swirling cause, conservation (maintenance of the zero 
transverse flux) of the axial component of moment of whirl is then a result of a balance 
between the flux terms mq, and - 2% vT 6 in the flux vector N ( (2 .15) ) .  Normal to the 
swirling half-axis, diffusion then balances fictitious convection of ring circulation. On 
the free-space half-axis (p = - 1 )  there is no distribution of the axial component of 
moment of whirl sources apparent to  the axial half-plane flow, since T (  - 1 )  = 0 .  As 
a result, the radial velocity here (f’( - 1 ) )  is finite. 

The non-dimensional transverse flux ks of the axial component of moment of whirl 
emanates from the swirling cause and diminishes to zero, in driving the axial half-plane 
flow, by the time the swirl-free half-axis is reached. An equal and opposite flux kA 
produced by the axial half-plane flow counters ks at each location, and thus ensures 
that the total transverse rate of discharge is zero. Consequently there is no actual 
production of the axial component of moment of whirl on the half-axes of symmetry. 

Even for small swirl circulation strengths, (7 .2)  results in radial convection of ring 
circulation being important in a neighbourhood of the swirling cause. For small 
kinematic swirl angular-momentum production, to first order the flow is almost-Stokes 
flow. As seen in $ 3  of 11, Landau’s point cause then controls the level of ring 
circulation to first order (the 1 -p2 term in (5.10) and I1 (3 .10) )  through its strength 
L, which specifies the mean axial component of moment of whirl density. (In (5.10) 

Where no physical causes are distributed along the axis, L =+ 0 results in viscous 
convection of ring circulation into the axis. The absence ( L  = 0) of Landau’s cause 
in the Stokes flow of the current problem would thus, a t  first order, fix the level of 
ring circulation so as to  avoid viscous convection into the free-space half-axis ( I  = 0 
on p = - 1).  Negative ring circulation concentrated by the viscous convection field 
near the right half-axis, diffusion of negative ring circulation from a neighbourhood 
of the swirling cause and (constant-sign) distributed production of ring circulation 
by the gradient in the swirl circulation then culminate in ring circulation being 
distributed with the same sense throughout the Stokes flow ( (5 .13) ) .  Fluid thus 
continues flowing in the sense induced when within a neighbourhood of the swirling 
cause (f,(p) < 0). 

In  the almost-Stokes flow, kinematic swirl angular momentum diffuses and 
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FIGURE 5. Axial half-plane streamlines for the solutions with J1 = 4xvec for (a) c = 0.1 ; (b )  3.0; (c) 
100. The kinematic swirl angular momentum is produced on the right half-axis of symmetry. 

viscously convects so that, on spherical surfaces, swirl circulation is distributed 
linearly with respect to the axial coordinate ((5.9)). The axial half-plane streamlines 
then appear as in figure 5 (a). 

A computed isometric view of the streamlines appears in figure 6(a ) .  (The swirling 
cause appears on the left at the half-axis y = 1 .) This figure displays the comparative 
strength of the swirl and axial half-plane velocities. Along the stream surfaces 
surrounding the swirling cause the swirl circulation is of order c with an axial half-plane 
velocity of order c2. Thus for small c the torsion of the streamlines is small (O(c)). 
As the fluid particles spiral along these lines they encounter a progressively weaker 
swirl circulation field while possessing always. the same order axial momentum 
(O(c2)). The torsion of the streamlines thus increases as the particles move along 
them. The particles travel roughly parallel to the swirling cause owing to the ring 
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p = l  

p = l  

p = - 1  

FIGURE 6. An isometric view of the streamlines for the solutions depicted in figure 5:  (a) c = 0.1; 
(b)  3.0; (c) 100. Note the comparative strengths of the swirl and axial half-plane velocities. 

circulation concentrated there ((5.13)) and spiral outwards from the axis of sym- 
metry after passing the origin owing to the flow becoming more potential in nature 

As the swirl circulation increases, axial convection becomes important in the 
previous Stokes-flow region. The induced axial half-plane flow becomes of comparable 
order to the swirl circulation with the result that the streamlines uncoil (figure 6 b ) .  
If this trend were to continue, kinematic swirl angular momentum would become 
spread almost uniformly throughout the flow, with the transition to zero swirl 
circulation at the free space half-axis being achieved in a boundary layer about that 

(go(- 1) = 0). 
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axis. The axial half-plane flow would possess a boundary layer at this same location. 
As the width of this layer diminished, the point source strength of the axial 
component of moment of whirl would become large and negative and consequently 
would not satisfy the production requirements of the problem under consideration. 
The flow configuration of the almost-Stokes flow is thus unacceptable for large 
kinematic swirl angular-momentum production. A separatrix in the flow must 
therefore develop as the production of kinematic swirl angular momentum increases. 
The numerical solutions indicate the critical value of c is very close to 3. 

Outflow would occur about this separatrix (6.5) as a result of the strong induced 
flow that surrounds the swirling cause. Ring circulation and kinematic swirl angular 
momentum neighbouring the swirling cause, as in the Stokes flow, are thus not 
confined by this convection field. The region to the right of the separatrix consequently 
becomes filled with almost-constant swirl circulation ((6.4)). To first order nodistributed 
production of ring circulation then occurs in this region, since there is no gradient 
in the swirl circulation to rotate the vortex tubes. The axial half-plane flow in this 
region is then equivalent to having distributed production of the axial component 
of moment of whirl with a strength -2xv2c2 on the right half-axis. This feeds the 
jet region with half its fluid. The other half is supplied by the flow induced in the 
region separated from the swirling cause. Convection opposing diffusion of kinematic 
swirl angular momentum across the jet yields swirl-circulation-free flow about the 
non-swirling half-axis. No distributed production of ring circulation then occurs here. 
Convection opposing diffusion of ring circulation across the jet indicates that the flow 
in the left region is also ring-circulation free. An outer swirl-free potential flow is thus 
entrained by the jet. 

Distributed production of ring circulation occurs only in the jet region, for it is only 
here that the gradient in the swirl circulation is significant. The distributed 
production of ring circulation is accounted for by the flux 

of ring circulation (32 of I). This is directed along the surfaces of constant swirl 
circulation. Within the jet region in the problem at hand, the radial dependence of 
this flux indicates that positive ring circulation is generated by rotation of the vortex 
tubes. Diffusion balances convection of ring circulation across the jet walls. The 
distributed production of ring circulation in the jet can thus be accounted for only 
by the radial component of the convective, viscous-convective and diffusive fluxes. 
Of these the nonlinear convective flux is the dominant one. Thus if the radial velocity 
at  the edge of the jet is of order qr the distributed ring-circulation production 
associated with (7.4) is accounted for by having 

q; = O(c2) 

(Sf’s dp = -t(,f’)2). The convection field in the outer flow is thus of order c. (The 
outer axial half-plane flow surrounding the swirling cause is known to be a swirl-free 
flow produced by a distribution of axial component of moment of whirl sources. In 
the light of the results of $4 in I1 then, the strength of the outer flow should be of 
order c (compare I1 (4.21) and (6.6) for p > pL*).)  The width E of the jet is controlled 
by the strength of the convection field in the outer flow. Consequently, diffusion 
opposing convection of ring circulation across the jet region implies 

8-1 = O(c) .  
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The width of the jet region is thus of order c-l. The radial velocity within the jet 
is then of order c2 and the intensity of the ring circulation concentrated in this region, 
as a result of the intense rotation of the vortex tubes, is of order c3 ((6.7) and (6.9)). 

If the rate of production of the axial component of moment of whirl at the origin 
is to be xv2c2 then the non-axial jet must be directed so as to achieve this requirement. 
The precise condition on the flow is given by (4.14). In sectors of the flow where the 
radial velocity is large compared with its transverse counterpart, the dominant flux 
of the axial component of moment of whirl emitted from the origin is seen to be 
equivalent to that for axial momentum, save a factor of t p .  (The dominant term , ~ ( f ’ ) ~  
appears in the integrand in (4.14).) Consequently, the jet region, which has a radial 
velocity of order c2 and a width of order c-l, provides a contribution to the point source 
strength of axial component of moment of whirl that is of order p*c3, since the 
momentum emitted radially in the jet is 

Z~v~((f’(p*))~ x width of jet = O(c3), 

which implies that the axial component of this emitted momentum (axial momentum) 
is of order p* c3. Here ,u* is the cosine of the angle the jet makes to the swirling cause. 

The radial velocity is also large in the jet region about the swirling cause, where 
the axial velocity has u cc vc/u outside a layer which extends to an angular width 
of order c-l from the swirling cause ($4 of 11). The axial momentum production from 
this region is thus O(c2 lnc) ((6.11)). In the other sectors of the flow the radial and 
transverse velocities are both of order c. The nonlinear contributions to the point axial 
component of moment of whirl production are there O(c2). 

The contributions to L from these distinct regions are required, in our problem, 
to sum to zero. The higher-order terms then indicate that the jet direction p* must 
be such that O(p* c3) + O(c2 In c) = 0. 

The jet is thus directed away from the swirling cause at an angle of order c-l lnc to 
the plane normal to the axis of symmetry. As the swirl circulation increases, the jet 
width thus narrows faster than the jet approaches the normal to the axis of 
symmetry. 

The axial half-plane streamlines for a large value of the swirl circulation appear 
in figure 5 (c). In the outer region about the swirling cause the axial half-plane velocity 
and the swirl circulation are of the same order ((6.4) and (6.6)), and the streamlines 
are helices with a pitch-circumference ratio of 0.5 : 

cv T cv 
2u’ n u *  

U N - -  - N -  

Fluid flows towards the radial jet, where it is violently ejected with the swirl 
circulation it obtained from its prior encounter with the swirling cause. In the region 
separated from the swirling cause the flow is swirl-free potential flow. This fluid is 
entrained into the jet with no swirl circulation. It gathers kinematic swirl angular 
momentum when within the jet as a result of diffusion down the gradient from the 
higher concentrations present in the other region of the flow. The streamlines within 
the jet have a very small curvature, since the radial velocity here is O(c)  larger than 
the swirl velocity. 
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